-, KEMAL AKBAR GUMILANG ANALISIS KEGAGALAN HYDRAULIC ENGINE DRIVEN PUMP PADA PESAWAT AIRBUS 330 DENGAN METODE RCA DI PT. GMF AEROASIA, TBK. -. (Submitted)
D-IV TPU 16 A_KEMAL AKBAR GUMILANG_TUGAS AKHIR_2025.pdf - Published Version
Restricted to Repository staff only
Download (14MB) | Request a copy
Abstract
Engine Driven Pump (EDP) adalah salah satu komponen paling krusial dalam sistem hidrolik pesawat Airbus 330, yang bertanggung jawab dalam menyediakan tekanan sebesar 3.000 psi untuk mengoperasikan sistem flight control, landing gear, brake system, dan thrust reverser. Mengingat fungsinya yang sangat vital terhadap keselamatan penerbangan, EDP dikategorikan sebagai No Go Item dalam dokumen Minimum Equipment List (MEL). Artinya, apabila salah satu EDP mengalami kegagalan, pesawat tidak diizinkan untuk terbang sebelum komponen tersebut diganti atau diperbaiki. Dalam konteks ini, reliabilitas EDP menjadi parameter penting yang harus dijaga oleh setiap operator maupun penyedia jasa perawatan pesawat. Data Base Maintenance Unit PT GMF AeroAsia Tbk mencatat sebanyak 55 kejadian kegagalan EDP dengan P/N 3022053-001 selama periode 2020 hingga 2024. Kegagalan ini tidak hanya menyebabkan kondisi Aircraft on Ground (AOG), tetapi juga berdampak langsung terhadap peningkatan biaya operasional akibat perawatan tidak terjadwal, gangguan terhadap rotasi armada, dan kerugian pada sisi waktu maupun pelayanan penumpang. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi akar penyebab dari kejadian kegagalan EDP secara sistematis, dan menyusun rekomendasi perbaikan berbasis teknik investigasi Root Cause Analysis (RCA). Penelitian dilakukan menggunakan metode kualitatif deskriptif dengan pendekatan studi kasus di Hanggar 3 GMF AeroAsia Tbk. Data diperoleh melalui observasi langsung terhadap proses instalasi dan inspeksi EDP, wawancara mendalam dengan lima personel teknis bersertifikasi Airbus 330 (terdiri dari Project Manager, Engineer, dan Teknisi), serta studi dokumentasi terhadap Aircraft Maintenance Manual (AMM), logbook, job card, dan removal history. Teknik triangulasi digunakan untuk menguatkan validitas dan reliabilitas data. Hasil data yang terkumpul kemudian dianalisis melalui pendekatan visualisasi Diagram Pareto, klasifikasi akar penyebab menggunakan Diagram Fishbone, dan formulasi tindakan korektif menggunakan metode 5W+1H. Berdasarkan analisis Pareto, tiga penyebab utama kegagalan EDP adalah kebocoran dari body (58,18%), kegagalan pada pressure switch (25,45%), dan kebocoran pada gasket serta o-ring (16,36%). Fokus utama penelitian diarahkan pada kategori leak from body, karena mewakili mayoritas penyebab kegagalan. Selanjutnya, RCA dengan pendekatan Fishbone Diagram mengungkap lima faktor dominan penyebab masalah. Manusia (Man): teknisi kurang memahami perbedaan prosedur antara post-mod dan pre-mod dalam AMM, Metode (Method): tidak adanya Detail Visual Inspection (DVI) pada job card, sehingga inspeksi tidak menyentuh area kritis EDP, Peralatan (Machine): ketidakterpenuhinya tools khusus seperti torque wrench digital dan special wrench, Material (Material): mutu o-ring tidak optimal, mudah terkikis oleh serpihan logam (metal chip), dan Lingkungan (Environment): pencahayaan kerja saat malam hari tidak memadai untuk pekerjaan presisi. Selanjutnya, metode 5W+1H digunakan untuk merumuskan tindakan korektif terhadap setiap faktor penyebab. Misalnya, pada aspek manusia, diperlukan pelatihan berkelanjutan untuk teknisi baru guna memahami perbedaan pre-mod dan post-mod. Di sisi metode, perlu diterbitkan engineering order yang secara eksplisit memuat prosedur inspeksi visual EDP. Sementara itu, pengadaan torque wrench digital dan special wrench perlu segera direalisasikan untuk memastikan akurasi torsi pengencangan. Dalam aspek material, dilakukan koordinasi dengan pemasok untuk menjamin kualitas o-ring. Terakhir, manajemen perlu menyediakan pencahayaan tambahan, seperti portable lighting, khususnya untuk pekerjaan malam hari di area terbatas. Rekomendasi perbaikan ini diperkuat melalui Focus Group Discussion (FGD) bersama teknisi dan engineer Airbus 330 yang berpengalaman, sehingga hasilnya bersifat aplikatif dan sesuai dengan kondisi operasional di lapangan. Implementasi dari rekomendasi ini diharapkan mampu menekan frekuensi kegagalan EDP, meningkatkan reliabilitas sistem hidrolik pesawat, serta mengurangi waktu downtime dan risiko AOG. Penelitian ini memberikan kontribusi nyata terhadap pengembangan strategi perawatan berbasis keandalan (reliability centered maintenance) di lingkungan GMF AeroAsia. Di samping itu, pendekatan RCA yang digunakan juga dapat dijadikan acuan dalam penyelesaian masalah teknis lainnya di industri aviasi, khususnya untuk komponen-komponen kritikal yang berdampak langsung terhadap keselamatan. Dengan mengintegrasikan data teknis, wawasan lapangan, dan teknik visualisasi analisis, penelitian ini menjadi model yang relevan bagi pengelolaan perawatan pesawat secara efisien dan preventif di masa mendatang.
Kata Kunci: Engine Driven Pump, Airbus 330, Sistem Hidrolik, Root Cause Analysis (RCA), Diagram Pareto, Fishbone Diagram, 5W+1H
The Engine Driven Pump (EDP) is a vital component of the Airbus 330 hydraulic system, generating a pressure of up to 3,000 psi to operate several critical aircraft systems, including flight control surfaces, landing gear, braking systems, and thrust reversers. Classified as a "No-Go Item" in the aircraft’s Minimum Equipment List (MEL), any malfunction in the EDP renders the aircraft inoperable until the component is replaced. Between 2020 and 2024, the Base Maintenance Unit of PT GMF AeroAsia Tbk recorded 55 cases of EDP failures with part number 3022053-001, highlighting a recurring reliability issue. These failures contributed significantly to Aircraft on Ground (AOG) events, unscheduled maintenance costs, and operational delays, thus necessitating an in-depth root cause analysis. This study aims to identify the fundamental causes behind EDP failures through the Root Cause Analysis (RCA) method, supported by a combination of quantitative and qualitative techniques, including Pareto Diagram visualization, Fishbone Diagram classification, and contextual analysis using the 5W+1H approach. Data was collected through direct observation of EDP installation and inspection procedures in Hangar 3 of GMF AeroAsia, semi-structured interviews with five certified Airbus 330 technical personnel (Project Managers, Engineers, and Senior Technicians), and a comprehensive review of technical documentation such as the Aircraft Maintenance Manual (AMM), logbooks, job card, and component removal history. Initial analysis using the Pareto Diagram revealed that 58.18% of failures were categorized as leaks from the pump body, followed by 25.45% from faulty pressure switches, and 16.36% caused by gasket and O-ring deterioration. These results served as the basis for further investigation into the most prevalent failure mode—leak from body. Through RCA and the Fishbone Diagram, five root cause categories were identified. Man: inadequate comprehension of AMM procedures, especially regarding post-modification configurations, Method: absence of detailed visual inspection (DVI) instructions in job cards and maintenance programs, Machine: lack of adequate tools, including digital torque wrenches and special access tools for confined spaces, Material: low durability of O-rings susceptible to wear due to metal chip contamination, and Environment: substandard lighting during night shifts, affecting the visibility and accuracy of EDP installations. Following the root cause findings, this research proposed corrective and preventive actions using the 5W+1H framework. Recommended actions include implementing a mandatory and recurring technician training program focusing on AMM interpretation and procedural accuracy, issuing engineering orders that specify EDP inspection points and torque values, upgrading maintenance tools (especially torque wrenches and special wrenches for limited access), coordinating with suppliers to ensure higher O-ring quality resistant to particulate wear, and providing portable lighting systems for maintenance work conducted at night or in low-light environments. These recommendations were validated through a Focus Group Discussion (FGD) with Airbus 330 technical personnel, ensuring their feasibility and relevance to operational realities at GMF. The implications of this study are multi-fold. Firstly, addressing the dominant root causes of EDP failure is expected to reduce the frequency of component removals and AOG events, thereby improving aircraft dispatch reliability. Secondly, by embedding RCA-based methodologies into maintenance planning, GMF AeroAsia can shift toward a more predictive and reliability-centered maintenance strategy, reducing downtime and extending the service life of hydraulic components. Thirdly, this study contributes to institutional knowledge by offering a structured framework for analyzing component failures beyond surface-level symptoms, combining technical diagnostics with human and environmental factors. From an academic perspective, this research demonstrates how failure analysis can be approached holistically by incorporating visual tools, structured interviews, and industry best practices. It also provides a replicable model for analyzing failure cases in other aircraft components, particularly those considered No-Go Items. Furthermore, the findings offer practical insights for airline maintenance organizations and OEMs in refining technical manuals, improving component design feedback loops, and enhancing technician training programs. In conclusion, this study confirms that EDP failures on Airbus 330 aircraft at PT GMF AeroAsia Tbk are predominantly caused by systemic issues involving technical procedures, equipment limitations, and environmental working conditions. Through RCA and supporting tools, a clear understanding of the root causes has been established, along with actionable improvement steps. It is expected that implementing these recommendations will lead to enhanced component reliability, reduced operational disruptions, and a stronger safety culture within the aircraft maintenance environment.
Keyword: Engine Driven Pump, Airbus 330, Hydraulic System, Root Cause Analysis (RCA), Diagram Pareto, Fishbone Diagram, 5W+1H
| Item Type: | Article |
|---|---|
| Subjects: | T Technology > T Technology (General) T Technology > TA Engineering (General). Civil engineering (General) |
| Divisions: | DIV Teknik Pesawat Udara |
| Depositing User: | Mr. Kemal Akbar Gumilang |
| Date Deposited: | 27 Oct 2025 02:46 |
| Last Modified: | 27 Oct 2025 02:46 |
| URI: | http://repository.ppicurug.ac.id/id/eprint/779 |
