ANALISIS KEGAGALAN CABIN PRESSURIZATION SYSTEM PADA KING AIR B200GT DI BALAI BESAR KALIBRASI FASILITAS PENERBANGAN

Wiradarma, Rangga ANALISIS KEGAGALAN CABIN PRESSURIZATION SYSTEM PADA KING AIR B200GT DI BALAI BESAR KALIBRASI FASILITAS PENERBANGAN. -. (Submitted)

[thumbnail of TUGAS AKHIR] Text (TUGAS AKHIR)
D-IV TPU 16A_RANGGA WIRADARMA_TUGAS AKHIR 2025.pdf - Published Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Balai Besar Kalibrasi Fasilitas Penerbangan merupakan AOC sekaligus AMO pesawat King Air B200GT, dalam operasinya terdapat kegagalan yang terjadi pada cabin pressurization system yang terdokumentasi pada AFML. Dalam menganalisis data kegagalan tersebut, penulis menggunakan metode campuran berupa kuantitatif dan kualitatif. Pada tahap pertama penulis membagi data dengan menggunakan Diagram Pareto sebanyak 2 kali yaitu untuk membagi berdasarkan ATA chapter dan komponen yang gagal sehingga memberikan kejelasan terhadap masalah yang terjadi berdasarkan frekuensinya. Pada tahap kedua penulis menggunakan RPN (Risk Priority Number) dalam FMEA (Failure Mode and Effect Analysis) dengan bentuk kuesioner wawancara yang diberikan kepada engineer King Air B200GT type rating holder sehingga hasil yang diperoleh diharapkan dapat menentukan prioritas tertinggi terhadap komponen penyebab kegagalan cabin pressurization system yang akan dijadikan acuan pada pengolahan selanjutnya. Pada tahap ketiga, 5W+1H digunakan untuk menentukan masalah yang terjadi melalui metode kualitatif dalam bentuk FGD (Forum Group Disscusion) berupa wawancara kepada engineer King Air B200GT type rating holder untuk mendapatkan corrective action dan preventive action terhadap kegagalan cabin pressurization system yang mendalam serta menjabarkannya atas what, who, when, where, why dan how sebagai unsur di dalamnya.
Hasil pada penelitian ini didapatkan bahwa pengolahan data AFML dengan menggunakan Diagram Pareto berdasarkan ATA chapter diperoleh bahwa ATA chapter 21 air conditioning sebanyak 20 dari 24 kejadian yang ada dengan presentase sebesar 83%, data tersebut menunjukan hasil yang dominan bahwakegagalan cabin pressurization system sering terjadi dalam ATA chapter 21 air conditioning. Selanjutnya, hasil diikuti oleh ATA chapter 52 door sebanyak 3 dari 24 kegagalan dengan presentase 13% dan ATA chapter 56 windows sebanyak 1 dari 24 kegagalan dengan presentase 4%.
Hasil yang diperoleh dalam ATA chapter 21 air conditioning dicari kembali kegagalannya berdasarkan komponen yang gagal dalam AFML. Terdapat 14 komponen penyebab kegagalan cabin pressurization system dalam ATA chapter 21 air conditioning dengan 1 komponen yang dominan yaitu flow control unit yang memiliki presentase kegagalan lebih tinggi yaitu dengan 22% dibandingkan komponen lainnya. Sedangkan 5 dari 14 komponen lainnya memiliki presentase sebesar 9%.
Berdasarkan TSM (Trouble Shooting Manual) bahwa flow control unit merupakan suatu kesatuan yang terdiri atas 3 komponen yaitu flow control valve, electrical controller – flow control valve dan ambient air temperature sensor, komponen tersebut membantu mekanisme kerja dari flow control unit saat beroperasi dalam sebuah kesatuan. Dalam pengolahannya FMEA digunakan untuk mencari RPN terhadap 3 komponen tersebut dan pada tahap ini akan menggunakan metode campuran yaitu kuantitatif dan kualitatif dalam bentuk kuesioner wawancara dengan hasil RPN dan transkrip wawancara yang diisi oleh enam responden King Air B200GT type rating holder.
Hasil total RPN kuesioner wawancara terstruktur kepada enam responden King Air B200GT type rating holder berdasarkan pengolahan data kuesioner menghasilkan rata-rata RPN tertinggi yaitu 106 oleh flow control valve, selanjutnya rata-rata RPN 40 oleh electronic controller-flow control valve dan rata-rata RPN terendah yaitu 31 oleh ambient air temperature sensor.
Selanjutnya, penelitian dilanjutkan menggunakan 5W+1H dengan bentuk wawancara FGD terstruktur kepada enam responden engineer King Air B200GT
type rating holder untuk mencari penyebab kegagalan flow control valve dengan mencari correction action dan preventive action. Hasil corrective action diperoleh bahwa kesalahan dapat terjadi mulai dari pemasangan hose dan connector yang tidak tepat, serta kurangnya daily maintenance pada komponen yang berkemungkinan menyebabkan penumpukan kotoran dan korosi. Perubahan suhu pada engine cowling dari dingin ke panas ketika flight membuat embun terperangkap, ditambah ketika landing dengan kondisi landasan bandara yang kurang baik dapat menyebabkan kotoran menempel lebih mudah pada flow control valve serta apabila pesawat terkena hujan atau terik matahari secara langsung dan terlalu lama dapat membuat flow control valve lebih cepat terkena korosi. Kurangnya keterampilan menggunakan special tools 1E30-2 test box flow pack dalam menentukan komponen yang gagal, walaupun tidak akan berdampak pada faktor kegagalan flow control valve. Kegagalan flow control valve umumnya karena ditemukan kotoran, korosi pada valve serta connector yang bad contact, miss dan kotor sehingga mengganggu kinerja flow control valve. Sedangkan preventive action dapat diperoleh bahwa pilot ketika descent/ascend dilakukan secara lebih perlahan, engineer/mechanic harus melakukan daily cleaning inspection pre/post flight serta double check inspection saat maintenance, Engineering perlu meninjau membuatkan maintenance program terhadap flow control unit dan PPC perlu menjadwalkan training dan retraining 1E30-2 test box flow pack serta merekomendasikan pengadaan insulated cover engine.
Kata kunci: Cabin Pressurization System, Diagram Pareto, FMEA, 5W+1H dan Flow Control Valve

Balai Besar Kalibrasi Fasilitas Penerbangan is both an AOC and AMO for King Air B200GT aircraft. During its operations, a failure occurred in the cabin pressurization system, which was documented in the AFML. In analyzing the failure data, the author used a mixed method consisting of quantitative and qualitative approaches. In the first stage, the author divided the data using a Pareto diagram twice: once to categorize based on ATA chapters and once to categorize based on the failed components, thereby providing clarity on the issues based on their frequency. In the second stage, the author used RPN (Risk Priority Number) in FMEA (Failure Mode and Effect Analysis) in the form of a questionnaire interview given to King Air B200GT type rating holder engineers so that the results obtained could determine the highest priority for the components causing the cabin pressurization system failure, which would be used as a reference for further processing. In the third stage, the 5W+1H method was used to identify the issues through a qualitative approach in the form of a Focus Group Discussion (FGD) involving interviews with engineers holding the King Air B200GT type rating. This aimed to obtain corrective and preventive actions for the cabin pressurization system failures in depth, and to elaborate on the elements of what, who, when, where, why, and how within them.
The results of this study indicate that the processing of AFML data using a Pareto chart based on ATA chapters shows that ATA chapter 21 air conditioning accounts for 20 of the 24 incidents, representing 83% of the total. This data demonstrates that failures in the cabin pressurization system frequently occur in ATA chapter 21 air conditioning. Furthermore, the results were followed by ATA Chapter 52 doors, accounting for 3 out of 24 failures with a percentage of 13%, and ATA Chapter 56 windows, accounting for 1 out of 24 failures with a percentage of 4%. The results obtained in ATA chapter 21 air conditioning were re-examined for failures based on the components that failed in AFML. There are 14 components.
that cause cabin pressurization system failures in ATA chapter 21 air conditioning, with one dominant component, namely the flow control unit, which has a higher failure rate of 22% compared to other components. Meanwhile, 5 of the 14 other components have a failure rate of 9%.
According to the TSM (Trouble Shooting Manual), the flow control unit is a unit consisting of 3 components, namely the flow control valve, electrical controller – flow control valve, and ambient air temperature sensor. These components assist the flow control unit's mechanism when operating as a unit. In its processing, FMEA is used to determine the RPN for these three components, and at this stage, a mixed method combining quantitative and qualitative approaches will be employed in the form of a questionnaire interview, with RPN results and interview transcripts filled out by six respondents who are King Air B200GT type rating holders. The total RPN results of the structured interview questionnaire for six King Air B200GT type rating holder respondents based on questionnaire data processing produced the highest average RPN of 106 for the flow control valve, followed by an average RPN of 40 for the electronic controller-flow control valve, and the lowest average RPN of 31 for the ambient air temperature sensor. The study was then continued using the 5W+1H method in the form of a structured FGD interview with six King Air B200GT type rating holder engineers to identify the causes of flow control valve failure and to determine corrective and preventive actions.
The corrective action results showed that errors could occur due to improper installation of hoses and connectors, as well as a lack of daily maintenance on components that could cause dirt buildup and corrosion. Temperature changes in the engine cowling from cold to hot during flight cause condensation to form, and when landing on a poorly maintained runway, dirt can more easily adhere to the flow control valve. Additionally, if the aircraft is exposed to rain or direct sunlight for an extended period, the flow control valve may corrode more quickly. Inadequate skill in using the special tools 1E30-2 test box flow pack to identify failed components, although this does not directly impact the failure of the flow control valve. Flow control valve failures are typically caused by dirt, corrosion on the valve and connectors, poor contact, misalignment, and contamination, which disrupt the performance of the flow control valve.
Meanwhile, preventive measures can be taken by having pilots descend/ascend more slowly, engineers/mechanics performing daily cleaning inspections before/after flights and double-checking inspections during maintenance, engineers reviewing and creating maintenance programs for flow control units, and PPC scheduling training and retraining for 1E30-2 test box flow packs and recommending the procurement of insulated engine covers.
Keywords: Cabin Pressurization System, Pareto Diagram, FMEA, 5W+1H, and Flow Control Valve.

Item Type: Article
Uncontrolled Keywords: Kata kunci: Cabin Pressurization System, Diagram Pareto, FMEA, 5W+1H dan Flow Control Valve Keywords: Cabin Pressurization System, Pareto Diagram, FMEA, 5W+1H, and Flow Control Valve.
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: DIV Teknik Pesawat Udara
Depositing User: Unnamed user with username rangga_tpu16a
Date Deposited: 24 Oct 2025 08:24
Last Modified: 24 Oct 2025 08:24
URI: http://repository.ppicurug.ac.id/id/eprint/386

Actions (login required)

View Item
View Item